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Symmetry changes at the Ne61 point in an 
antiferromagnet on a triangular lattice in an external 
magnetic field 

K Osuch 
Department of Physics, University of South Africa, PO Box 392, ooO1 Pretoria, South 
Africa 

Received 19 February 1991, in final form 29 July 1991 

Absbact. Landau-type theory has been applied to the calculation of symmetry changes at 
the metamagnetic phase transition in a two-dimensional antiferromagnet on a triangular 
lattice placed in an external magnetic field parallel or perpendicular to the surface of the 
system. As the high-temperature phases of the system can be described by non-unitary or 
unitary magnetic groups, their irreducible wrepresentations or representations, respect- 
ively, have been applied in this calculation. Two order parameteen, magnetic and strain 
tensor. have been introduced into the thermodynamic potential density due to the fact that 
the lowtemperature phases may be magnetic and distorted. It his been shown that if the 
magnetic field is perpendicular to lhe surface of the system, the corepresentations do not 
induce magnetic phase transitions, which contradicts experimental observations, It means 
that, in general, a description of magnetic crystals in terms of non-unitary magnetic groups 
isincorrect. 

1. Introduction 

A relatively large number of substances are known which, with high accuracy, can be 
regarded as quasi-two-dimensional antiferromagnets on a triangular lattice (AFMT) 
[1,2].Amongthem,twovanadiumcompoundsVC1,(TN= 36K),VBr2(TN=28.5K) 
[3-71 and the intercalation compound C,Eu [8, 91, are the most well known. Exper- 
imental [9] and theoretical [IO] investigations show that the latter substance, which is a 
metamagnet (the interplane exchange is ferromagnetic), is an easy-plane AFMT. 

In this paper we will apply a Landau-type theory (see [II, 121) to describe symmetry 
changes and the relevant low-temperature spin structures which occur at the meta- 
magnetic phase transition in a two-dimensional AFMT placed in an external magnetic 
field parallel or perpendicular to the easy plane of the antiferromagnet. 

The symmetry group of the magnetically ordered high-temperature phase of the 
AFMT is the maximal common subgroup of the unmagnetized AFMT and the magnetic 
field (Curie principle, see [13]). Two possibilities appear here. We can either describe 
this high-temperature phase in terms of a non-unitary or a unitary magnetic group, 
and hence in terms of corepresentations (see [14]) or representations, respectively. A 
description of a magnetic crystal in terms of a non-unitary group has been given by 
CrackneU[15] in his calculation of a symmetry change at a spin-flop transition between 
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Y /i/ F- 1.The basis vectorso, anda,, the symmetry 
elementsofthe two-dimensionalgroup c"' and 
the direction of an external magnetic field. 

twomagneticallyorderedphasesinMnF2crystals. Magneticcrystalshave been described 
in terms of non-unitary groups by Dimmock and Wheeler [I61 and by Bradley and 
Cracknell[14]. On the other hand, Opechowski and Guccione 1171 in their classification 
of magnetic crystals treated the operation of time reversal as a unitary operation. The 
same standpoint was accepted by Kovalev [IS] in his paper on symmetry changes at a 
continuous phase transition from aparamagnetic phase to magnetically ordered phases. 
Koch5ski and Osuch 1111 applied both descriptions in their dculations of symmetry 
changes in FeClrtype metamagnetic crystals and in rare-earth crystals with space-group 
symmetry fi3/mmc (D&) and concluded that they are not equivalent. We will also 
apply both approaches and compare the results. 

Our system will be described on the level of the mean-field approximation. Conse- 
quently, thespinstructure will be dividedintosublattices,with parallel spins withineach 
sublattice. Thisstatecan beachieved by astrongferromagnetic coupling within each sub- 
lattice. 

2. The phase transitions in a magnetic lield parallel to the surface of the system 

2.1. The thermodynamic potential dens@ 

Without a magnetic field and for temperatures above or at the Ne61 point the space 
group of the AFMT is the two-dimensional space group number 17: p6mm (see [19]). 
When the AFMT is placed in an external magnetic field parallel to its surface (see figure 
1) we deal with a composite system: a two-dimensional AFMT plus field. According to 
the Curie principle the symmetry group of the composite system, which is the maximal 
common subgroup of the symmetry group of the two-dimensional AFMT and of the field 
symmetry group, is the two-dimensional magnetic group number 21: cmm' (see 1201): 

cm" = c lml  + Bod,clml (1) 

when the field is directed along one of the hexagon diagonals, or the two-dimensional 
magnetic group number 1:pZ': 
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Table 1.The irreducible representations and wrepresentations of the two-dimensional mag- 
neticgroup c m "  at the point Xof the reciprocal lattice space. In labelling the group elements 
we use symbols of Bradley and Cracknell [14]. Tbe represcntatioa mattices for thc g o u p  
elements which wntain the time-inversion operator have been multiplied by -1. 

E ec, 0"l nlQt + fm 
A ,  1 -1 -1 1 1  

(-l)"r+"* 
-1 

B;,DA* 1 1 1 
A ,  1 -1 1 
B , D A "  1 1 -1 -1 J 

Table2.The irreduciblerepresentationsand wrepresentationof thetwo-dimensionalmag- 
netic gmupp2' at the point Xof the reciprocal lattice space. The representation matrices for 
the group elements which contain the time-inversion operator have been multiplied by - 1. 

1 -1 (-1)"l'"2 A 
B,  DA 1 1 

p2* =pi + ec,pi (2) 
when the field is not parallel to one of the diagonals, where clml andpl are the two- 
dimensional space groups number 5 and number 1 (see [19]), and udl and C, are the 
reflection in the y-axis and the rotation about the point (0,O) by n (see figure l), 
respectively. 

As the high- and low-temperature phases of the AFMT are magnetic and may be 
distorted we have to introduce two order parameters: a magnetic order parameter and 
a strain tensor [21]. The magnetic order parameter M&) at the lattice site xp can be 
defined by the following equations (see [ l l ] ) :  

M,(xp)  =Wp) -Wp + x q )  

IM.(xp)12 = [JKJX,) - ~s-bpk-'xp)12 g E GM (4) 

p = 1,2,. . ., 212 (3) 
for a collinear spin structure, with constant xq, and with L denoting the number of 
suhlattices, and 

for a non-collinear spin structure, where g is an element of the low-temperature sym- 
metry group GMl. By definition the symmetry group ofM,(x,) determines the symmetry 
of the low-temperature phase. Depending on whether the groups cmm' and p2' are 
considered to be unitary or non-unitary magnetic groups, this order parameter trans- 
forms according to their irreducible representations or corepresentations at the point X 
(which is equivalent to the point Mof the unmagnetizedphase see [19]) of the reciprocal 
lattice space, respectively. The irreducible representations A , ,  A l .  B, ,  B ,  of cmm' and 
A ,  Bofp2', whichcan be calculatedfromKovalev'sformula(see [13]), are bothLandau 
and Lifshitz active. They are given in table 1 and table 2 ,  respectively. The application 
of the appropriate formulas given by Bradley and CrackneU[14] allows us to calculate 
theirreduciblecorepresentationsDA', DA"ofcmm' andDAofp2', which arecollected 
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in table 1 and table 2, respectively. All of them belong to ease (a) (see [14]), and are 
Landau and Lifshitz active. The corepresentations DA', DA" and DA are formally 
idcntical to the representations B2, B 1  and B.  However, due to different transformation 
properties, they may induce different phase transitions. 
On the other hand the strain tensor transforms according to the symmetrized square 

[Dp]zof the polar vector representation Dpof the crystallographic point group mm2 and 
2, respectively (see [22]). After the reduction of [DPlz we obtain the following results: 

[DPl2 = 2Al @A2 for mm2 (5) 

[DP]* = 3A for 2 (6) 

and 

where, now, A, and A are the unit representations, and A Z  is given in the tables of 
Bradley and Cracknell[14]. Inspecting table 1, we can see that there is no change of the 
crystallographic point group mm2 at the possible phase transitions from the high- 
temperature group cmm'. Therefore, according to Neumann's principle (see [13]), 
the strain tensor does not change either. It must be, thus, connected with the unit 
representation A ,, and excluded from the thermodynamic potential density. In the case 
of p2' the strain tensor also transforms according to the unit representation A and is 
excluded from the potential density. From the tables of Birrs [23] we find the strain 
tensors, 

in the high- and low-temperature phases for the groups cmm' and p2'. respectively. The 
above matrices are written in the coordinate system (x, y) shown in figure 1. The forms 
of the tensors, (7), indicate that the lattice distortions in the directions parallel and 
perpendicular to the magnetic field are different. 

The thermodynamic potential density @ has the form (see [ll]) 

@ = @(MI + @(MA + @(M,M,) 
where M is the magnetization vector. It ean be shown that the external field term @(M) 
has the symmetry of the high-temperature phase and since it does not depend on the 
components of M, it is irrelevant in the determination of the minima of @. The term 
@(MJ has the customary form of an expansion in terms of the components cj of the 
order parameter. The lowest-degree invariant which appears in the term @(M, M,) 
representing the coupling between M and Ms can be incorporated into the potential 
density @(Ms). Therefore, with accuracy to the sixth-order term, the thermodynamic 
potential density, which is invariant under the symmetry operations represented by the 
one-dimensional irreducible representations and corepresentations of cmm' and p2', 
has the form 

@(M,) = A(T,  H)cz + C(T, H)c' + D(T, H)c6 (8) 
wberec transformsunderA,,AZ, B, ,  B2,DA', DA",A,BorDA, respectively, and 

A(T,H)=@T(T- T,)+a,(H-H,)  

C(T,H) = CT(T- T,) + C,(H-  H,) (9) 
with arcH fa , ,cr  (see [24]), where T,, H, and T,, H, are the temperature and the 
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magnetic field at the critical and tricritical point, respectively. The type of the phase 
transition described by 6 depends on the sign of the coefficient C(T, H). For a positive 
Cwecan haveacontinuous transition, while foranegative Cwecan haveadiscontinuous 
transition. The equilibrium value of c is determined on the basis of the potential density 
(8). The necessary and sufficient conditions can be written out and fulfiled with appro- 
priate values of the phenomenological coefficients A, C and D (see [13]). 

2.2. The symmetry changes and spin structures 

The magnetic order parameter (3) or (4) in the low-temperature phase of the AFMT can 
be expressed by the formula 

M h )  = c(T, H)f(r) (10) 
wheref(r) is an axial-vector basis function of any of the above calculated irreducible 
representations and corepresentations of cm" andp2', and c( T, H) is the equilibrium 
value of c in (8). 

Theset oftwo basisfunctionsofeachoftheone-dimensionalcorepresentations DA', 
DA" of cmm' and DA of p2' consists of the basis function (pi of the unitary subgroup 
clml o r p l  (see (1) and (2) ) ,  respectively, and of the basis function (pr obtained from 
the formula: A(pi = (p! , where i = 1 , 2  for cmm' and i = 1 forp2'. The functions (pi can 
be calculated in the customary way (see [ll]) by acting with the projection operators 

pi = t T,(R)T(R) i = 1,2, for clml 
R E m  

and 

PI = T(E) forpl 

where r i (R)  denotes the value of the irreducible representation ri of clml for the 
symmetry element R E clml,  on the axial-vector trial function: 

+(r) = [::]e*lr 

where k, is the wavevector at the point X of the reciprocal lattice space and d,, d, are 
complex numbers which refer to the axes x, y in figure 1. In turn, the basis functions 
connected with the two irreducible blocks of a reduced case (a) corepresentation are 
obtained by applying to the set of the basis functions (pi, (p[ the appropriate trans- 
formations Uand V(see [14]). This procedure leads to the following bases. 

 DAW = z 1 0  [ 1 0  
]e*'. f$j,(r) = 3 [ d* - d2]e'Ll' forDA' 

2+d: 

We observe that the basis functionsfDAp,fDA. andfDA are real at the lattice sites and, 
therefore, can be used in the expansion (10) with a real coefficient c. On the contrary, 
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Table 3. The low-temperature phase symmeuy groups induced by the irreducible rep- 
resentations and corepresentations ofcm" and~;?'.  

~~ 

Representation or Group 
mrepresentation Symmetryekments symbol 

the basis functions f LA,, f andfgi ,  which stem from the negative sign in the formula 
(7.3.45) of [14] and which generate corepresentations (these corepresentations are 
formally identical to the representations A,, A, of cmm' and A of p2', respectively) 
equivalent to DA', DA' and DA, respectively, are imaginary and, therefore, can only 
be applied in the expansion of M, with an imaginary c. Due to the anti-unitariness of 8 
they lead to the same symmetrygroupsofM,andthe samespinstructuresasthefunctions 

become basis functions of the irreducible representations A,,  52, Azr B1 of cmm' and 
A ,  B ofp2'. respectively. 

Introducing the functions (12) into (10) and utilizing (3), which connects the order 
parameter with the sublattice magnetizations, and the assumption that the symmetry of 
M, determines the symmetry of the low-temperature phase, we obtain the magnetic 
moment M(r) at the lattice site r = nlul + nzaz of this phase: 

f D A * ,  f D a .  and f D a .  For real dj and dz the fUlIctiOnS f b l , ,  f D A t ,  fkiw, f D A * ,  f g l ,  f D A  

for DA', DA"and DA, respectively, 

m = [ 3 for A ,, A,, A 

and 

for B , ,  B,and 5, respectively. Thuswe canconclude that the representationsAl,A20f 
cmm' and A of p2' do not induce magnetic phase transitions. The corepresentations 
DA', DA"and DA generate spin structures which are identical to thoseobtained for the 
representations B2, B ,  and 5, respectively. 

Acting on M,(r) with the symmetry operations of the group cmm' and p2' we 
determine the low-temperature groups, which we collect in table 3. In order to classify 
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Y (a) (b)  

Figure2.Thelow-tempraturespinstructuresinduced by theirreduciblerepresentations B ,  
and B2 and the mrepresentations DA' and DA" of lhe high-temperature symmetry group 
c"'; (U )  is induced by B2 and DA', (b)  is induced by B , ,  DA". Spin arrangements in the 
low-temperature phases induced by the irreducible representations and mrepresentations 
ofp2' are analogous. 

these groups with tabulated two-dimensional magnetic groups [Xi] we have to perform 
the following operations: 

(i) move the origin of the coordinate system (x-y) by the appropriate vector t (see 
table 3), 

(ii)'i&oduce the new elementary translations 

a; = a ,  - a ,  a; = 01 + a* 

for thegroupsinduced by E , ,  B,,  DA' andDA", and 

ai = a ,  a; = 2 a 2  

for the groups induced by B and DA. 

The results of the application of this procedure are given in table 3. The low-temperature 
spin structures connected with the calculated groups, which are determined by the 
fomulas.(l3) and (14), are shown in figure 2. 

An experimental verification of which of the calculated spin structures exists in the 
system is facilitated when the cross-section for elastic magnetic scattering of neutrons is 
known. The neutron magnetic scattering cross-section has the form (see [25]) 

where F(K) denotes the form factor, K is the scattering vector, e = K/K, 01, p = x ,  y ,  
M,(r) and Mp(r') are the thermodynamic averages of the spin operator components at 
the latticesitesrandr', respectively. These spinvectors aredetermined by (IO). Inserting 
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U 

Figwe 3. The basis vectors a, and a, and the 
symmetry elements of ihe diperiodic magnetic 
group p6n'm'. The magnetic field is pnpen- 
dicular to the plane of the tipre. 

(lo), withflr) determined by (12). into formula (17) and performing the summations, 
we obtain the magnetic scattering cross-section 

(18) 
du 
- - - I F ( K ) ~ * U : ( ~ - ~ : ) X . ( K - ~ ,  - K )  
d P  K 

for the spin structure induced by DA' and a similar formula with a,, ey replaced by a,, 
e,, for the structure induced by DA", and 

d o  - - ~ F ( K ) I ~ [ ~ ; ( I  - e : ) - ~ l a z e , e y  +a$(1  - e t ) l X . ( ~ - k l  - K )  
d P  I 

for the structure induced by DA. K is a reciprocal lattice vector, a, = c(d ,  + d f )  
anda, = c(d, + d; ) .  Forrealdl,d2thecross-sections(18)and(19) becomethemagnetic 
scattering cross-sections for the magnetic structures induced by the representations B2, 
B ,  and B, respectively. 

(19) 

3. The phase transitions in a magnetic 6eld perpendicular to the surface of the system 

3.1. The thermodynamicpotential density 

As a magnetic field, which is perpendicular to the surface of the AFMT introduces the 
third dimension, the AFMT becomes a system with diperiodic symmetry, i.e. a system 
which has an infinite periodicity inonly two dimensions but additionally allows symmetry 
elements which may affect the non-periodic third dimension. Therefore, the symmetry 
group of the AFMT is the diperiodic space group number n: f i m m  (see [26]). Conse- 
quently, the magnetic symmetry group of the composite system, consisting of the two- 
dimensional AFMT and the magnetic field, which is the maximal common subgroup of 
f6mm and of the symmetry group of the field, is the diperiodic magnetic space group 

P6 4- O U ~ ,  P6 (20) 
where P6 is the diperiodic space group number 76 (see [26]). Since the diperiodic 
magneticspace groups have not beenclassified yet, we shall follow ShubnikovandBelov 
[ZO] in their labelling of the two-dimensional magnetic space groups and call the group 
in (20) P6m'm' (see figure 3) .  
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Table 4. The irreducible, Landau and Lifshitz active representations and mrepresentatiom 
ofthe diperiodic magneticspace group P6m‘m‘ at the point M ofthe reciprocal lattice space 
and the irreducible representation E, of the clystallographic point group 6”. In labelling 
the group elements we use symbols of Bradley and Cracknell[14]. The representation 
matrices for the group elements which contain the time-inversion operator have been 
multiplied by -1. 

1 0 0  0 0 - 1  -1 0 0 
B, ,DB 0 1 0 1 0  0 0 0 1  

0 0 1  0 1  0 0 1 0  
1 0 0  0 0 -1 1 0 0  

B, 0 1 0  1 0  0 0 0 -1  
0 0 1  0 1  0 0 -1 0 
1 0 0  0 0  1 -1  0 0 

A , , D A  0 1 0 1 0  0 0 0 -1 
0 0 1  0 1  0 0 -1 0 

1 0 -t -4VT 1 0  
Ea 0 1  h5 -4 0 -1 

The magnetic order parameter defined by (3) or (4) transforms according to the 
irreducible representationsorcorepresentationsof P6m’m’ at the point Mof the recipro- 
cal lattice space. The irreducible, Landau and Lifshitz active representations Al, B1 and 
Bz of P6m’m’ can be calculated from Kovalev’s formula, and are given in table 4. As in 
the previous case, the irreducible corepresentations DA and DE of P6m‘m‘ can be 
obtained with the application of the algorithm given by Bradley and CrackneU(14]. The 
matrices of DB and DA are collected in table 4. 

Consulting the tables of Birrs [D],  we find the form of the strain tensor 

[P 3 
which indicates that the high-temperature phase is not distorted. The symmetrized 
square [D,]*of the polar vector representationof thecrystallographic point g o u p  6mm, 
according to which this tensor transforms, may be reduced in the following way: 

[ D , I Z = A l @ E z  (21) 
where now A, is the unit representation of 6mm and Ez is given in table 4. The lattice 
distortion of the low-temperature phase, therefore, must be connected with the hvo- 
dimensional representation ED 

With accuracy to sixth-order terms, the thermodynamic potential density which 
contains terms connected with both order parameters and mixed ‘interaction’ terms and 
which is invariant under the symmetry operations represented by the matrices of Al ,  
Bt, B,, DB, DA and EZ has the form: 

q5 = q50 + U ( T ,  m ( C :  + ct + c:) + iC,(T,  H)(c: + c: + Ci)* 
+ 4C,(T, H)(c: + c: + c4) + *D,(T,  H)(c:c?c:) 

+ QD*(T, H)(C? + c: + 4)’ + BD,(T, H)(c$ + c$ + c$)  
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3 
t 
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where (cl,c2, c3) and (yl, yz) transform underA B1, E2, DBor DA and El ,  respectively, 
and 

A(T,H)=n,(T- T,)+a,(H-H,) cl(T,H)=c,(T-T,)+cH(H-H,)  
(23) 

with.arcH # n H c T .  The minimization of $J is facilitated if we introduce the angular 
coordinates by the equations: 

cI = R s i n 8 c o s q  

y , = r c o s a  yl = rsin (Y. (24) 

cz = R sin 0 sin 9, C) = R c o s e  

The necessalycunditionsforthe minimumof $J lead to thesetsofvaluesof the coefficients 
cl, cz, c3, y1 and y2 which are collected in table 5. The sufficient conditions can also be 
written out and fulfilled with appropriate values of the phenomenological parameters 
A , A ' ,  Ci, Cz, C3, DI, Dz7 D3, Dq, E ,  F, GI and G2. 

3.2. The symmetry changes and spin strucfures 

The sets of values of the coefficients ci which minimize the potential density (22) (see 
table 5) determine the magnetic order parameter below the critical point 

M d r )  = CI(K H)fi(r) + CZV, H)f& + cdT, Wf3W (25) 
wherefl,fi,f3 are axial-vector basis functions of A 1, E l ,  BZ. DA or DE, respectively. 

in the previous section, have the following form 
The basisfunctionsofDA and DE, whichcanbecalculatedwiththemethoddescribed 

d3 - df  
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-dl - df + d2 

where k, = &b2 is the wavevector at the point M of the reciprocal lattice space, k, = 
(b ,  - bz), k, = $bl are the wavevectors from the star *kl, and d,, d,, d, are complex 
numbersreferredtotheaxes(x,y,z)ofthecrjordinatesystemdeterminedbytheBravais 
lattice vectors al ,  a2, u3 of the high-temperature phase (see figure 3). For real d,, d,, d3 
the functions h33 ,f&33 and fb33(-) become axial-vector basis functions of the rep- 
resentationSA,, E ,  and E,, respectively. 

Wenotice that the fi~nctionsfbk~ andfb%)(-) contain real andcomplexcomponents 
and therefore cannot be applied in expansion (25) of the magnetic order parameter, 
which is a real function. This means that the corepresentation DE does not induce 
magnetic phase transitions. On the other hand the functions fb i3 ,  which are pure 
imaginary, can only be used in the expansion of M, with imaginary parameters c1, c2, c3. 
These parameters, however, transform according to the corepresentation DA- ,  (i.e. 
the corepresentation generated by the functions fbi3(-)), which is not Landau active. 
We therefore conclude that the active corepresentations DA, DE ofp6m'm' cannot be 
applied to describe magnetic phase transitions and, consequently, the low-temperature 
spin structures of the system. 

Since the axial-vector basis functions of A, vanish (see (26)),  this representation 
cannot generate magnetic phase transitions of the system. Introducing the basis functions 
of the remaining representations into (25) and using the assumption concerning the 
symmetry of a possible low-temperature phase (see the previous section), we obtain the 
magneticstructures shown in figure 4. The symmetry groupsof these structures are given 
in table 5. To identify these groups we have shifted the origin of the coordinate system 
x-y by the appropriate vector t, which we also give in table 5. In the labelling of the low- 
temperature, diperiodic magnetic space groups we applied the same method which had 
earlier been proposed by Shubnikov and Belov [ZO]. 
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i./ (J) 

Figurp4.The low.rempenmre spinrtructure-iinduced by the irreducible represenlarions BI 
and B,  of the high-temperatwe symmetry group P 6 " m ' ;  (U), (c). [ e )  are induced b) B,  and 
(b).(d).(nbYBi. 

Similarly, the equilibrium values of y, determine the symmetry groups of the strain 
tensors connected with the low-temperature phases of the system. The strain tensors, 
which can be found from the tables of Birrs [23], are collected in table 5. They describe 
the lattice distortions that accompany the magnetic phase transitions of the system. 
Among the sets of ci and yi which minimize the potential density (22) there also appear 
ones that violate Neumann's criterion, i.e. that lead to the low-temperature symmetry 
groups whose crystallographic classes do not coincide with the symmetry groups of the 
relevant strain tensors. As they do not have any physical meaning, we have excluded 
them from tabie 5. 

The neutron magnetic scattering cross-sections for the spin structures determined 
by the sets of values of c, collected in table 5 can again be calculated on the grounds of 
(17). In the Cartesian coordinate system (x, y, z) whose x and z axes are defined by the 
magnetic moment direction at the origin of the (a l ,  a*, a,) system (see figures 3 and 4) 
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and the a3 vector, respectively, these cross-sections have the following form 

10035 

for the solutions with c,, ci # 0, c, = 'ci, and 
--lF(~)l~[(l d o  - e : ) [ x ( u : 6 ( ~ - k ~  - K ) + a f s ( ~ - k ~  -a)] 
d 8  K 

+ (1 - e:)[z ( b : s ( ~  - k f  - K) + 6 $ 6 ( ~  - k2 - K ) ) ]  
K 

- 2 e , e y [ z ( o Z b 2 S ( ~ - k z  - K ) - a l b 1 6 ( ~ - k ,  -K))]] 

for the solutions with c,, ci # 0, ci # q, where now ai = (d/2V'?)ci(-2d1 + dz) ,  
6, = (1/2V5)ci(-2d, + d Z ) ,  i = 1,2. 

The cross-sections above can facilitate the experimental identification of the various 
magnetic structures shown in figure 4. 

K 

4. Conclusions 

We have discussed symmetry changes in a two-dimensional AFMT placed in an external 
magnetic field. Dependingon whether the field is parallel or perpendicular to the surface 
of the antiferromagnet, the composite system (two-dimensional AFMT plus field) is 
described by a two-dimensional magnetic group (cmm' or p2') or by a diperiodic 
magnetic space group (P6m'm'). These groups were treated as unitary or non-unitary 
and their irreducible representations or corepresentations, respectively, were applied 
in the calculation. The two descriptions of the high-temperature magnetically ordered 
phases proved to be equivalent when the magnetic field is parallel, and contradictory 
when it is perpendicular to the surface of the m. In the second case, contrary to the 
experimental observations (see the Introduction), the corepresentations do not induce 
magnetic phase transitions. It means that, in this case, the description of the high- 
temperature phase of the antiferromagnet by the non-unitary group f6"m' isincorrect. 
However, when this group is treated as unitary, we obtain a variety of spin arrangements 
(see figure 4) including experimentally observed antiferromagnetic spin structures. 

We thus conclude that, in general, a description of magnetic crystals in terms of non- 
unitary magnetic groups is incorrect. We also notice that, due to the fact that real 
corepresentations may have non-real axial-vector basis functions, particular care should 
be taken while applying corepresentations of magnetic groups to the calculation of 
symmetry changes at magnetic phase transitions within the framework of Birman's 
theory (see [13]). The group-theoretical criteria of Birman should, in this case, be 
supplemented with a condition of reality of basis functions of irreducible co- 
representations. 
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